Датчики Холла: принцип работы, применение, проверка мультиметром

Зачем нужен датчик Холла, в каких устройствах он стоит

Что такое датчик Холла

Датчики Холла представляют из себя твердотельные радиоэлементы, которые становятся все более популярными в радиолюбительской среде и разработке радиоэлектронных устройств. Они применяются в датчиках измерения положения, скорости или направленного движения. Они все чаще заменяют собой путевые выключатели и герконы. Так как такие датчики являются абсолютно герметичными и представляют из себя простой радиоэлемент, то они не боятся вибрации, пыли и влаги. То есть по сути датчик Холла простыми словами – это радиоэлемент, который реагирует на внешнее магнитное поле.

Объяснение программы для Arduino

Полный код программы приведен в конце статьи, здесь же мы рассмотрим его наиболее важные фрагменты.

Мы задействуем в плате Arduino один контакт для ввода данных (к нему подключен датчик Холла) и один для вывода данных (к нему подключен светодиод). На контакте, к которому подключен датчик Холла, мы будем использовать прерывание. Поэтому внутри функции setup нам необходимо инициализировать эти контакты и сконфигурировать контакт 2 таким образом, чтобы на нем можно было использовать прерывания.

Arduino

1
2

3

4

5

void setup() {

pinMode(LED, OUTPUT); //контакт, к которому подключен светодиод, в режим вывода данных

pinMode(Hall_sensor, INPUT_PULLUP); //контакт, к которому подключен датчик Холла, в режим ввода данных с внутренним подтягивающим резистором

attachInterrupt(digitalPinToInterrupt(Hall_sensor), toggle, CHANGE); //контакт 2 будет контактом прерывания, при возникновении прерывания будет вызываться функция toggle

}

При обработке прерывания могут использоваться много параметров: Toggle (переключение), Change (изменение), Rise (высокий уровень), Fall (низкий уровень) и т.д. Мы в нашем проекте будем использовать изменение сигнала на выходе сигнального контакта датчика Холла.

Поэтому внутри функции toggle мы будем использовать переменную “state” которое будет изменять свое состояние на 0 если ее текущее состояние 1, и на 1 если ее текущее состояние 0. В дальнейшем значение этой переменной можно, соответственно, использовать для включения и выключения светодиода.

Arduino

1
2

3

void toggle() {

state = !state;

}

Наконец, внутри функции loop нам необходимо просто управлять состоянием светодиода. Как мы уже обсудили, состояние переменной state будет изменяться каждый раз когда датчик Холла будет обнаруживать рядом с собой магнит, поэтому состояние этой переменной мы будем использовать для управления состоянием светодиода.

Arduino

1
2

3

void loop() {

digitalWrite(LED, state);

}

Эффект Холла

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странный эффект. Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я пометил гранями ABCD.

Он пропускал постоянный ток через грани D и B. Потом поднес перпендикулярно пластинке постоянный магнит и обнаружил напряжение на гранях А и C! Этот эффект и был назван в честь этого великого ученого. Основной физический принцип данного эффекта был основан на силе Лоренца. Поэтому радиоэлементы, основанные на эффекте Холла, стали называть датчиками Холла.

Но здесь один маленький нюанс. Дело в том, что напряжение Холла даже при самой большой напряженности магнитного поля будет какие-то микровольты. Согласитесь, это очень мало. Поэтому, помимо самой пластинки в датчик Холла устанавливают усилители постоянного тока, логические схемы переключения, регулятор напряжения а также триггер Шмитта. В самом простом переключающем датчике Холла все это выглядит примерно вот так:

дачик холла внутреннее строение

где

Supply Voltage – напряжение питания датчика

Ground – земля

Voltage Regulator – регулятор напряжения

А – операционный усилитель

Hall Sensor – собственно сама пластинка Холла

Output transisitor Switch – выходной переключающий транзистор (транзисторный ключ)

Устранение неисправностей

В принципе датчик Холла редко ломается, но если это происходит, автопроизводители советуют просто заменить его на новый. Но поскольку стоимость прибора немаленькая, особенно если речь идёт об иномарке (а здесь работает следующее правило: чем престижнее автомобиль, тем дороже запчасти к нему), то многие автовладельцы отдают предпочтение самостоятельному ремонту. В принципе конструкция датчика относительно проста, поэтому особых сложностей при его реставрации возникнуть не должно.

В качестве примера рассмотрим алгоритм проведения ремонта ДХ, устанавливаемого на некоторые модели Volkswagen. Обычно наиболее подверженной поломкам является логический элемент микросхемы, маркируемый последовательностью символов S441А. Собственно говоря, он и является сердцем датчика, регистрирующим отклонения в напряжении на рабочих пластинах. Наша задача – заменить его, для чего предстоит выполнить следующие действия:

само собой, без приобретения нового логического элемента не обойтись – при этом вполне может подойти и его аналог; купленную деталь предварительно следует проверить на работоспособность. Делается это следующим образом: нужно соединить в цепочку обычный светодиод и сопротивление номиналом 1-2 кОМ, после чего подключить данную конструкцию к выводам «выход» и «+» микросхемы. Величина напряжения, которым следует запитывать логический элемент, должна варьироваться в пределах 3-30 В – этого достаточно, чтобы при воздействии на микросхему достаточно мощным магнитом светодиод засветился; посередине датчика сверлом диаметром 8-10 мм следует проделать отверстие, обрезают провода «заподлицо», чтобы они не выглядывали наружу, после чего с помощью тонкого надфиля в корпусе пропиливаем канавки, в которые будут уложена новая проводка; вышедший из строя логический элемент прикрепляем в проделанном окошке и устанавливаем ДХ на место для проверки его работоспособности. В момент прохождения шторки вала через прорези «короны» светодиод должен гореть, когда прорезь «уходит» — светодиод гаснет; если ничего не получилось – дело в полярности плюсового и минусового выводов. Их нужно просто поменять местами; если наша схема со светодиодами работает, остается выполнить разводку выводов микросхемы через проделанные канавки. Для этого в окошке припаивают провода, концы которых следует соединить с разъемом

Здесь важно снова не перепутать полярность выводов (на разъёме трамблёра они маркируются как «+», «-» и «0»); после пайки внимательно осматриваем проводки на отсутствие повреждений, тестируем датчик мультиметром на предмет отсутствия коротких замыканий. Если всё нормально – герметизируем проделанное нами технологическое отверстие (желательно и канавки тоже) термостойким клеем; осталось установить ДХ на штатное место и протестировать все провода на предмет отсутствия КЗ (они не должны «прозваниваться» на корпус).

В принципе точно таким же образом можно восстановить работоспособность датчика Холла на других марках авто, поскольку принципиально они все схожи мех собой – различия могут заключаться только в геометрии компонентов прибора.

В некоторых случаях (например, механическая поломка) ДХ ремонту не подлежит, и тогда придётся приобретать новую запчасть и производить замену датчика целиком. Это несложная операция, которая под силу даже начинающим автомобилистам. Приводим алгоритм процедуры:

  • демонтируем сам трамблёр, не отсоединяя его провода;
  • снимаем крышку, совмещаем метки ГРМ с меткой, расположенной на коленвалу;
  • фиксируем положение трамблёра;
  • извлекаем крепёж, фиксаторы и стопоры;
  • вынимаем вал;
  • отвёрткой откручиваем клеммы ДХ и сам датчик;
  • аккуратно вынимаем прибор, оттянув для этого регулятор;
  • устанавливаем исправный датчик и проделываем все операции в обратном порядке.

Опять же, описанный алгоритм пригоден для большинства марок/моделей авто, за редким исключением.

Линейные (аналоговые) датчики Холла

В линейных датчиках напряжение Холла (напряжение на гранях А и С) будет зависеть от напряженности магнитного поля. Или простыми словами, чем ближе мы поднесем магнит к датчику, тем больше будет напряжение Холла. Это и есть прямолинейная зависимость.

В линейных датчиках Холла выходное напряжение берется сразу с операционного усилителя. То есть в линейных датчиках вы не увидите триггер Шмитта, а также выходного переключающего транзистора. То есть все это будет выглядеть примерно вот так:

линейный датчик холла

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку.

Теоретически, если подавать ну очень сильный магнитный поток на датчик Холла, то напряжение Холла будет бесконечно большим? Как бы не так). Выходное напряжение будет лимитировано напряжением питания. То есть график будет выглядеть примерно вот так:

линейный датчик холла график

Как вы видите, до какого-то момента у нас идет линейная зависимость выходного напряжения датчика от плотности магнитного потока. Дальнейшее увеличение магнитного потока бесполезно, так как оно достигло напряжения насыщения, которое ограничено напряжением питанием самого датчика Холла.

Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого провода, например, токовые клещи.

токовые клещи датчик холла

Существуют также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах, называют линейными, так как напряжение на датчике Холла прямо пропорционально плотности магнитного потока.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Виды

Есть два типа датчиков Холла:

  • Цифровые датчики.Работают на определение магнитного поля. Если индукция доходит до определенного предела, то датчик дает сигнал на присутствие магнитного поля. Если предел не достигнут, то сигнал равен нулю. Слабая индукция и малая чувствительность датчика не дает сигнал наличия поля. Недостатком такого типа датчика является то, что у него есть зона нечувствительности порогов. Цифровые датчики Холла делятся на униполярные и биполярные:
  • Униполярные датчики Холла работают, если есть поле какой-либо полярности, выключаются при уменьшении индукции. — Биполярные датчики Холла срабатывают на изменение полярности поля. При одной полярности датчик включается, а при другой – выключается.
  • Аналоговыйвид датчиков Холла изменяет индукцию поля в разность потенциалов. Значение датчика зависит от полярности и его силы. Нужно учитывать, на каком расстоянии находится датчик.

Применение

Датчики Холла входят в состав многих приборов. Чаще они применяются в измерении напряженности поля магнитной индукции, в электродвигателях, в ионных двигателях ракет. Широкое распространение датчики Холла нашли в устройстве системы зажигания современных автомобилей.

Также они используются в бесконтактных выключателях, герконах, при измерении силы тока, уровня жидкости и других местах. Главное их преимущество – это воздействие без физического контакта.

Как проверить на автомобиле исправность датчика Холла

В быту с такой проблемой сталкиваются чаще всего автомобилисты. Наиболее простым способом является обыкновенная замена на исправный датчик. Если после замены система зажигания заработала, значит необходимо менять датчик. Если нечем заменить проверяемый датчик, то собирают простое устройство, которое может имитировать работу датчика Холла. Берется кусок провода, и тройной разъем от распределителя зажигания. Эти предметы работают аналогично датчику.

Для контроля пользуются обычным мультиметром. Если датчик вышел из строя, то тестер покажет 0,4 вольта или меньше. Также проверяется работа датчика путем проверки искры при подключении зажигания. Перед этим соединяют концы провода к выходам коммутатора. Если неисправность возникла не на автомобиле, а на другом оборудовании, то необходим тестер. Методика проверки будет зависеть от прибора, в котором установлен датчик.

Датчики Холла в смартфонах

Мобильные гаджеты имеют в составе много функциональных блоков. Среди них есть вспомогательные датчики, одним из которых является датчик Холла. В современных устройствах связи такие датчики являются измерительными элементами, с помощью которых определяют мощность магнитного поля, его изменения. Они называются в честь ученого Холла.

Для чего установлен датчик Холла в смартфоне

Этот сенсорный элемент имеет много возможностей. Одной из них является измерение магнитной индукции приборов, а также бесконтактное управление. В дорогих моделях смартфонов имеется магнитометр, работа которого основана на датчике Холла.

Будет интересно➡ Кварцевые резонаторы — принцип работы и сфера применения

На многих мобильниках этот датчик не полностью реализован. В основном этот сенсор применяют для таких задач:

  • Цифровой компас. Применяется для программ навигации и повышения скорости позиционирования.
  • Оптимизация взаимодействия устройства с разными аксессуарами, магнитными чехлами.
  • Применение датчика в раскладных моделях телефонов, для включения и отключения экрана при движении крышки.

Пример работы магнитного датчика Холла в чехле и смартфона заключается в том, что при открывании и закрытии чехла автоматически происходит блокировка экрана. Датчик реагирует на движение магнита, на усиление магнитного поля.

Особенности применения датчика Холла в автомобиле

В машине датчик Холла работает по принципу обычного ключа – замыкателя и размыкателя. Магнит при этом вращается в трамблере и влияет на закрепленный стационарным способом сам датчик. Когда последний начинает «чувствовать» магнитное поле, он начинает подавать импульсы, которые, в свою очередь, вызывают искру для зажигания. Для автомобиля датчик Холла является одним из ключевых элементов системы его зажигания и присутствует в любой модели независимо от комплектации и стоимости.

Иногда этот прибор может применяться в цифровых автомобильных спидометрах или тахометрах, а также применяться для проверки скорости движения передаточных данный и с целью контроля работы антиблокировочной системы машины.

Кроме того, данный агрегат отличается высокой надежностью. Он способен работать далеко не один год, а ломается, как правило, из-за сильного физического воздействия или вследствие сильных загрязнений. Очень часто датчик устанавливается так, чтобы его можно было с легкостью в любой момент снять и сменить. Исключение составляют только те приборы, которые используются для контроля наиболее сложных автомобильных систем.

Цифровые датчики Холла

Как только наступила эра цифровой элек троники, в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Самый простой датчик Холла на триггере Шмитта мы уже рассмотрели выше и он выглядит вот так:

По сути такой датчик имеет только два состояние на выходе. Либо сигнал есть (логическая единица), либо его нет (логический ноль). Гистерезис на триггере Шмитта просто устраняет частые переключения, поэтому в цифровых датчиках Холла он используется всегда.

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные

Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. К примеру, подносим южный полюс магнита и датчик сработает. На северный магнитный полюс он реагировать не будет.

Биполярные

Подносим магнит одним полюсом – датчик сработает и будет продолжать работать даже тогда, когда мы уберем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Устройство ДХ

Мы уже отмечали, что в автомобиле датчики, работающие по принципу, изобретённому почти полтора столетия назад, могут использоваться в самых разных целях, но при этом обязательной компонентой он является только в системе зажигания.
Поэтому имеет смысл описать устройство датчика Холла именно этого типа. Он состоит из:

  • микросхемы, реализующей улавливание изменения напряжения на пластине;
  • постоянного магнита;
  • пластикового корпуса;
  • лопасти ротора;
  • контактной группы;
  • магнитопроводов.

Несмотря на относительное большое количество компонентов, такой датчик обладает целым рядом неоспоримых достоинств:

благодаря миниатюризации современных микросхем он имеет компактные размеры; выражаясь терминами электротехников, электрический сигнал, формируемый датчиком, имеет чётко выраженную прямоугольную форму – при включении он практически мгновенно принимает определённое стабильное значение без плавных подъёмов и спусков, что чрезвычайно важно для цифровых устройств типа контроллера; в датчике, измеряющем скорость вращения коленвала, динамика частоты срабатывания (как результат изменения оборотов мотора) не приводит к рассогласованию момента измерения.

Однако есть у ДХ и недостатки. Главный из них заключается в низкой чувствительности прибора, на который могут оказывать существенное влияние внешние электромагнитные помехи, формируемые в бортовой электросхеме автомобиля в результате работы большого количество электронных/электрических устройств и приборов.

Более высокая стоимость датчика Холла по сравнению с аналогами магнитоэлектрического типа действия нивелируется простотой крупномасштабного производства. Что касается надёжности, то уязвимость ДХ заключается в слабой защищенности от электрических наводок, но зато в нём отсутствуют или сведены к минимуму механические компоненты, подверженные быстрому износу.

Как проверить датчик Холла

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

Судя по даташиту, на первую ножку подаем плюс питания, на вторую – минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

ss41 распиновка выводов

Для этого соберем простейшую схему: светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и сам датчик Холла.

Теперь цепляемся к нашей схеме от блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс питания – на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил красным бумажным ценником один из полюсов магнита. Какой именно – я не знаю, так как не имею компаса, с помощью которого можно было бы узнать, где северный полюс, а где южный.

Как только я поднес магнит “красным” полюсом к датчику холла, то у меня светодиод сразу потух.

Переворачиваю магнит другим полюсом, подношу его к датчику Холла и вуаля!

Если магнит не переворачивать, то есть не менять полюса, то светодиод также останется потухшим, потому что датчик биполярный.

А вот и видео работы

Как вы видите на видео, мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть – единичка, сигнала нет – ноль. То есть светодиод горит – единичка, светодиод потух – ноль.

Принцип действия и типы

Использование сенсоров в различных устройствах (в планшете, в частности) объясняется их способностью реагировать на изменения поля и отключаться при закрытии магнитной крышки чехла. Благодаря этому свойству они устанавливаются и в стиральных машинах, позволяя контролировать скорость вращения барабана. Если выразиться простым языком – здесь датчик Холла используется как тахометр.

Историческая справка

Чтобы понять принцип работы этого элемента, потребуется небольшой экскурс в историю. В 1879 году американский физик Холл открыл интересное явление, связанное с поведением проводника с током в магнитном поле. Проверка показала, что если через помещенную между магнитами медную пластину пропускать ток, то на ее боковых гранях появляется разность потенциалов. Возникает закономерный вопрос: как проверить это напряжение в домашних условиях?

Оказалось, что на практике его можно измерить мультиметром или любым другим прибором, имеющим соответствующие пределы. То же самое можно сделать любым подходящим тестером или подобным ему прибором.

Подключение измерителя подтверждает то, что движущиеся электроны под действием магнитного поля отклоняются в сторону (перпендикулярно направлению их движения).

Важно! Величина этого отклонения или разность потенциалов пропорциональна «мощности» магнитов и силе тока через пластину.

На этом основании Холл заключил, что такой проводник – хорошее средство для измерения магнитного поля. На данном эффекте основана работа особого чувствительного элемента, называемого датчиком Холла. Разобравшись с тем, как он работает в каждом конкретном устройстве, можно быть уверенным в окончательном усвоении его принципа действия.

Классификация

Важно понимать, какие бывают датчики Холла, и по какому принципу их принято классифицировать. По особенностям работы и тому для чего он нужен или по назначению, датчик Холла может иметь различные исполнения. Одна из разновидностей – аналоговые приборы, вырабатывающие на выходе непрерывный сигнал.

В отличие от них цифровой элемент имеет только два дискретных состояния («ноль» и «единица»). Эта разновидность прибора может быть униполярной или иметь биполярный тип. Первая из них срабатывает при обнаружении поля любой полярности и отключается при его исчезновении. То есть униполярный цифровой сенсор реагирует только на отсутствие или наличие магнитной напряженности. Рассмотренные особенности каждого из подвидов также помогают понять, что это такое – датчик Холла.

Униполярные сенсоры переключаются в «единицу» лишь при достижении полем порогового уровня и не способны определять его наличие при слабых напряженностях. Указанное свойство – существенный минус таких приборов, заметно ограничивающий сферу их применения. Биполярный датчик срабатывает с учетом полярности магнитного поля, одна из которых включает его, а другая – выключает.

Условное графическое обозначение приборов этого класса приведено на фото ниже:

Применение датчиков Холла

В настоящее время область применения датчиков Холла очень обширна и с каждым годом становится все шире и шире. Вот основные применения:

Применение линейных датчиков

  • датчики тока
  • тахометры
  • датчики вибрации
  • детекторы ферромагнетиков
  • датчики угла поворота
  • бесконтактные потенциометры
  • бесколлекторные двигатели постоянного тока
  • датчики расхода
  • датчики положения

Применение цифровых датчиков

  • датчики частоты вращения
  • устройства синхронизации
  • датчики систем зажигания автомобилей
  • датчики положения
  • счетчики импульсов
  • датчики положения клапанов
  • блокировка дверей
  • измерители расхода
  • бесконтактные реле
  • детекторы приближения
  • датчики бумаги (в принтерах)

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: